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Recommendation is …

 Find items of interest to target user from vast amount of items
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Food

Recipe

Book
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Restaurant
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Used Information for Recommendation

Target User

Demographic 
information

(age/gender/…)

Interaction data
(purchase/
rating/…)

User DB

Item DB

User-user
similarity

Purchase/
evaluation

Item-item
similarity

• Binary data (implicit)
• Purchase = like

• Ordinal data (explicit)
• 5-scale rating



6

Assumption behind Recommendation

 Similar users have similar preference for items

 Purchased same items in the past

 Similar demographic information

 Users prefer items similar to those they 
preferred in the past

 Movies of same categories

 New album of favorite singer

Conditions of similar users

Collaborative 
Filtering



Collaborative Filtering

 Rating Matrix

 Record of user-item interaction

 Value

Rating … 1:bad – 5:good

 Implicit feedback … 1:buy – 0:not yet

 Predict unknown rating value 

 Neighborhood-based approach

 User-based: similar user = similar ratings to same items

 Item-based: similar item = similar ratings by same user
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Neighborhood-based CF

 Prediction by weighted average

 Rating × similarity

 Similarity of user vectors

 Cosine 

 Pearson correlation coefficient
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0.1
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Matrix Factorization-based CF

 Neighborhood-based CF = Memory-based approach

 User/item vector = row/column of rating matrix

 Too sparse: few common items rated by different users

 Cold start problem, sparsity problem 

 Solution: dimensionality reduction

 Rating matrix ⇒ user models, item models with lower dimensions

 Prediction by dot product of item/user vectors

 Model-based approach
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Variations of Matrix Factorization-
based CF

 SVD (Singular Value 
Decomposition) [Sarwar00]

 NMF (Non-negative Matrix 
Factorization) [Lee00]

 U, V: non-negative values

 PMF (Probabilistic Matrix 
Factorization) [Salakhutdinov07]

 Rating ~ 𝑁(𝑈𝑉𝑇 , 𝜎2)
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Model-based CF

 Matrix Factorization-based CF (MCF)

 Neural-based CF (NCF)[He17]

 Common strategy

 Learning latent factors for user/item

 Difference in predicted rating calculation 

 MCF: linear function … dot product

 NCF: nonlinear function
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Evaluation Metrics

 Prediction error

 MAE (Mean Absolute Error)

 RMSE (Root Mean Square Error)

 Top-N recommendation

 Precision: ★÷■

 Recall : ★÷■
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Actual rating 5 3 2

Predicted rating 4 3 4

𝑀𝐴𝐸 =
5 − 4 + 3 − 3 + |2 − 4|

3
= 1.0

𝑅𝑀𝑆𝐸 =
5 − 4 2 + 3 − 3 2 + 2 − 4 2

3
= 1.29

Recommend
N items

favorite 
items



Beyond Accuracy

 Traditional challenge

 Cold start problem: new users, new items

 How to achieve high accuracy for new users?

 Recent challenges

 Context awareness: location, time of day, weekday/weekend, etc.

 Long-tail items: recommend unpopular items

 Diversity: recommend different set of items

 Behavior change: recommend different actions from past

13



Long-tail Item Recommendation

 Long-tail: unpopular item

 Amazon: 1/3 of sales from long-tail items (past)

 Common practice: 80 % of sales from 20% popular items

 Head area << tail area

 Difficult in brick & mortar shops

 Merit for seller (company)

 Gain of sales

 Merit for customers

 Personalized service    customer satisfaction 

Ranking

Sales

Long-tail

Bestseller
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Difficulty in recommending long-tail 
items

 Popularity bias

 Popular item: 

 Attract positive ratings

 Recommend to many users

 Regardless of CF algorithms

 Solution

 Consider other factors than 
accuracy

 e.g. Diversity
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Diversity

 [Within user] Different types of items for a user

 Different genres, artists, topics, etc.

 [Between users] Different items for different users

 Useful for solving social concerns

Hotels, restaurants

 Long-tail items contribute
to diversification
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Problem:
Concentration to 
famous item

Full!

Vacant

Potentially 
suitable

homogenous Diversified

Star Wars EP1 Star Wars EP1

Star Wars EP2 Walking dead

Star Wars EP3 Peter Rabbit

Matrix KAN-WOO

Solo: SW story Oceans



Behavior Change

 Social concern in modern society

 Health promotion

 Walking route recommendation

 Healthy food/recipe recommendation

 Energy-saving behavior

 Infection prevention

 Challenges

 Past behavior is meaningless: Favorite ≠ profitable

 From Favorite items to profitable & Acceptable items

 Explanation: Why this items is recommended
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Personality & Personal Values

 Personality

 Individual difference among 
people in behavior patterns, 
cognition, emotion

 Inherent nature

 Big-five factors

 Openness to experience

 Conscientiousness

 Extroversion

 Agreeableness

 Neuroticism

 Personal values

 Basis for ethical action

 Acquired nature

 Rockeach value survey (RVS)

 Terminal values (18 items)

 End-states of existence

 True friendship / Happiness / etc.

 Instrumental values (18 items)

 Preferable modes of behavior

 Ambition / Love / Courage / etc.
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Challenge for Personal Values-based 
Recommendation

 Distance to preference

 What to recommend to “Ambitious” user?

 Difficult to directly apply to recommendation

 Independent of target item domain

 Modeling method should be common to any items

 Possibility of computation

 Without interpretation / tuning by human expert

 Implicit modeling
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Personal Values as Important Attributes
for Decision Making
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Visual

Story

Visual

Story

Total Total
Both users agree 
in attribute level

BUT

Total evaluation is
different

Different 
personal values

Movie



Rating Matching Rate (RMR)

Attribute Polarity

Total Positive

Story Positive

Actor Positive

Music Negative

Review1

Attribute Polarity

Total Negative

Story Negative

Actor Positive

Music Positive

Review2

Attribute Story Actor Music

Match 2 1 0

Unmatch 0 1 2

RMR 1.0 0.5 0.0

RMR
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Same polarity as total evaluation

- User model = n-dimensional vector
consisting of each attribute’s RMR
- High RMR = strong effect on 
decision making



Advantage of Personal Values-based 
User Modeling

 Model is constructed on attribute space of target item
 Easy to combine with ordinary recommendation methods

 Can be calculated for any attribute IF rating is given

 Stable modeling with small number of reviews (<10)

 Effective for “lack of information” problem

 Potential for 
 Interpretability: suitable for Explanation of recommendation

 Recommending Acceptable items: satisfy important attributes

 Recommending Long-tail items: shown by experiments
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Personal Values-based Collaborative 
Filtering (Neighborhood-based CF)

 Extend User-based collaborative filtering

 Used for user-user similarity calculation

 Baseline: correlation of item ratings (i.e. neighborhood-based)

 Proposed: correlation of RMR
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Experimental Result

 Target data: 4Travel

 5,079 users

 7,295 hotels

 64,137 ratings: sparse dataset

 Comparison of MAE

 All methods achieved lower MAE for 
around 4

 Proposed method: lower MAE for 
lower ratings
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Potential for Long-tail item 
recommendation

 Long Tail selection: select unpopular items with high predicted ratings

 PV can enhance effect of Long Tail selection

 PV can improve precision
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MCFPV (Matrix-based CF employing 
Personal Values)

 Difference from usual approach

 Latent factors ⇒ Item’s attributes

 User / Item models: RMR

 Recommend higher score items
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Score (Rating) 
Matrix

MU

M(item)

N
(user)

N

L (Attributes)

MV
T

M

2LMR

2L

L

Interpretability

Positive RMR
Negative RMR

Large value in MR(story, cast) 
⇒Users care about casts’ reputation 
if they put priority on story.

Model Relation Matrix



Model Relation Matrix

 Manual Setting[Shiraishi17]

 Diagonal matrix

 Learning from
rating matrix

 Based on prediction error

 BPR (Bayesian Personalized 
Ranking) [Rendle09]
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𝑀𝑅 =

𝑤1,1 ⋯ 𝑤1,𝐿

⋮ ⋱ ⋮
𝑤𝐿,1 ⋯ 𝑤𝐿,𝐿

𝑤1,𝐿+1 ⋯ 𝑤1,2𝐿

⋮ ⋱ ⋮
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⋮ ⋱ ⋮
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−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 2

−1 ⋯ 0
⋮ ⋱ ⋮
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Experiments: Dataset 

 Yahoo! Movie: rating ∈{1,2,..,5}

 5 Attributes: Story, Cast, Scenario, Visuals, Music

 Hotpepper Beauty: rating ∈{1,2,..,5}

 4 attributes: Atmosphere, Service, Skill, Price
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Dataset # User # Item # Rating Density

Yahoo! 
Movie

18,507 6,746 523,730 0.00420

Hotpepper
Beauty

31,976 8,101 72,386 0.00028



Result: P@3, R@3, Div@3
Yahoo! Movie
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Result: (X) Popularity vs. (Y) Diversity 
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Good / Bad Points of Personal 
Values-based User Modeling

 [GOOD] Model is constructed on attribute space of target item

 Easy to combine with ordinary recommendation methods

 Can be calculated for any attribute IF rating is given

 [GOOD] Stable modeling with small number of reviews (<10)

 Effective for cold-start / sparsity problem

 [BAD] Need reviews POSTED by target users

 # of reviewers << # of ROMs
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

User Modeling from Review Browsing 
Behavior

32

Attribute-level evaluation (by reviewers)

[ReviewA]
Close to Tokyo 
station. …

[ReviewB]
They gave us  
good service. …

[ReviewC]
Comfortable for 
the price. …







Most 
helpful

Rating 
(1-5) for 

hotel

Polarity
(Total)

Polarity
(Attribute)

RMR

Access
Cost performance
Service
Room
Bathroom
Meal

Access
Cost performance
Service
Room
Bathroom
Meal

Access
Cost performance
Service
Room
Bathroom
Meal



From user modeling to item modeling
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Total ★★★★★

Story ★★★★★

Total ★★☆☆☆

Story ★★★★☆

Rating records of 
target user

Total ★★★★☆

Story ★★★★★

Total ★★★☆☆

Story ★★☆☆☆

Rating records 
of target item

Lift value

…

RMR

…

User modeling [Proposed] Item modeling

More review available 
for item than user



From RMR to Lift value 
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Personal-values-based 
user model

Proposed method

RMR=
#𝑚𝑎𝑡𝑐ℎ𝑒𝑑

#𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑+#𝑚𝑎𝑡𝑐ℎ𝑒𝑑

Attribute 
evaluation

Total 
evaluation

Pos Pos

Neg Neg

Attribute 
evaluation

Total 
evaluation

Pos Pos

Pos Neg

Neg Pos

Neg Neg

Lift value
Calculate 4 values for attribute



Calculation of Lift value

Attr P→P P→N N→P N→N

Story 2.00 0.67 0.00 1.33
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𝑿: Polarity of 

Attribute evaluation

Pos

Neg

Pos

Neg

lift 𝑋 → 𝑌 ＝
P(𝑋∧𝑌)

P 𝑋 P(𝑌)

The probability of “The movie is favored” 
doubles with the condition of “Story is 
favored” 

𝒀: Polarity of 

Total evaluation

lift 𝑃𝑜𝑠 → 𝑃𝑜𝑠 = 2.0

Pos

Pos

Neg

Neg

4 patters of lift value

Example for movie data



Explaining recommendation with lift 
value
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Attribute P→P P→N N→P N→N

Story 2.00 0.67 0.00 1.33

Casts 1.08 0.93 0.87 1.11

Direction 1.22 0.81 0.83 1.14
Visual
quality 0.00 1.33 2.00 1.33

Music 1.12 0.67 0.97 1.09

“People who like story tend to be satisfied
with the movie”

“People tend to be satisfied with the movie 
even though they do not like Visual quality”

Attribute 
evaluation

Total 
evaluation

Pos Pos

Pos Neg

Neg Pos

Neg Neg

As I don’t care 
about visual 

quality, I might 
like it. 



Conclusion

 Personal values-based information recommendation

 RMR: Modeling user’s personal values

 Introduction to collaborative filtering (neighborhood-based, Matrix-based): 
effective for long-tail item recommendation

 User modeling from browsing history

 Item modeling with explanation

 Beyond recommending favorite items

 Paradigm shift to acceptable items 

 Extend applicability of recommender systems: behavior change support, 
etc.
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