TAAI2022

Recommendation Based on Personal-values: beyond Recommending What You Might Prefer

YASUFUMI TAKAMA TOKYO METROPOLITAN UNIVERSITY, JAPAN

Research Topics

Web Intelligence

Recommendation

InfoVis.

Support for improving AI performance

Human in the loop

Support for information access/understanding

Table of Contents

Introduction to Information Recommendation

- Aim of recommendation
- Algorithms
- Evaluation metrics

Beyond Accuracy

- Challenges
- Personal values
- Introduction to collaborative filtering
- Extension: user modeling from browsing history, item modeling

Recommendation is …

4

Find items of interest to target user from vast amount of items

Used Information for Recommendation

Assumption behind Recommendation

Similar users have similar preference for items

- Purchased same items in the past
- Similar demographic information
- Users prefer items similar to those they preferred in the past
 - Movies of same categories
 - New album of favorite singer

anditions of similar users

Collaborative Filtering

Collaborative Filtering

- Rating Matrix
 - Record of user-item interaction
 - Value
 - ▶ Rating … 1:bad 5:good
 - ▶ Implicit feedback … 1:buy 0:not yet
 - Predict unknown rating value
- Neighborhood-based approach
 - User-based: similar user = similar ratings to same items
 - Item-based: similar item = similar ratings by same user

Neighborhood-based CF

Rating matrix

- Prediction by weighted average
 - ► Rating × similarity
- Similarity of user vectors
 - Cosine
 - Pearson correlation coefficient

Matrix Factorization-based CF

- Neighborhood-based CF = Memory-based approach
 - User/item vector = row/column of rating matrix
 - ▶ Too sparse: few common items rated by different users
 - Cold start problem, sparsity problem
- Solution: dimensionality reduction
 - ▶ Rating matrix \Rightarrow user models, item models with lower dimensions
 - Prediction by dot product of item/user vectors
 - Model-based approach

10

Variations of Matrix Factorizationbased CF

- SVD (Singular Value Decomposition) [Sarwar00]
- NMF (Non-negative Matrix Factorization) [Lee00]
 - ► U, V: non-negative values
- PMF (Probabilistic Matrix Factorization) [Salakhutdinov07]
 - ► Rating ~ $N(UV^T, \sigma^2)$

Model-based CF

- Matrix Factorization-based CF (MCF)
- Neural-based CF (NCF)[He17]
- Common strategy
 - Learning latent factors for user/item
- Difference in predicted rating calculation
 - ▶ MCF: linear function … dot product
 - NCF: nonlinear function

Evaluation Metrics

- Prediction error
 - MAE (Mean Absolute Error)
 - RMSE (Root Mean Square Error)
- ► Top-N recommendation
 - ▶ Precision: ★÷■
 - ▶ Recall : ★÷■

Recommend N items

Actual rating	5	3	2
Predicted rating	4	3	4

$$MAE = \frac{|5-4| + |3-3| + |2-4|}{3} = 1.0$$
$$RMSE = \sqrt{\frac{(5-4)^2 + (3-3)^2 + (2-4)^2}{3}} = 1.29$$

Beyond Accuracy

Traditional challenge

- Cold start problem: new users, new items
- ► How to achieve high accuracy for new users?

Recent challenges

Context awareness: location, time of day, weekday/weekend, etc.

- Long-tail items: recommend unpopular items
- Diversity: recommend different set of items
- **Behavior change:** recommend different actions from past

Long-tail Item Recommendation

Long-tail: unpopular item

- Amazon: 1/3 of sales from long-tail items (past)
- Common practice: 80 % of sales from 20% popular items
- Head area << tail area</p>
- Difficult in brick & mortar shops
- Merit for seller (company)
 - Gain of sales
- Merit for customers
 - ▶ Personalized service \Rightarrow customer satisfaction \uparrow

Difficulty in recommending long-tail items

- Popularity bias
 - Popular item:
 - Attract positive ratings
 - Recommend to many users
 - Regardless of CF algorithms
- Solution
 - Consider other factors than accuracy

Long-tail item Popular item Popular Long-tail item item Popular Popular item item Popular Long-tail Popular item item item Long-tail item

Diversity

[Within user] Different types of items for a user

Different genres, artists, topics, etc.

[Between users] Different items for different users

Problem:

famous item

- Useful for solving social concerns
 - ► Hotels, restaurants
- Long-tail items contribute to diversification

Behavior Change

- Social concern in modern society
 - ► Health promotion
 - Walking route recommendation
 - Healthy food/recipe recommendation
 - Energy-saving behavior
 - Infection prevention
- Challenges
 - ▶ Past behavior is meaningless: Favorite \neq profitable
 - From Favorite items to profitable & Acceptable items
 - **Explanation**: Why this items is recommended

17

Frequent light off Peak-shift Green Curtain

18

Personality & Personal Values

Personal values

- Basis for ethical action
- Acquired nature
- Rockeach value survey (RVS)
- ► Terminal values (18 items)
 - End-states of existence
 - ► True friendship / Happiness / etc.
- Instrumental values (18 items)
 - Preferable modes of behavior
 - ► Ambition / Love / Courage / etc.

Personality

- Individual difference among people in behavior patterns, cognition, emotion
- Inherent nature
- Big-five factors
 - Openness to experience
 - Conscientiousness
 - Extroversion
 - ► Agreeableness
 - ► Neuroticism

Challenge for Personal Values-based Recommendation

Distance to preference

- ▶ What to recommend to "Ambitious" user?
- Difficult to directly apply to recommendation
- Independent of target item domain
 - Modeling method should be common to any items
- Possibility of computation
 - Without interpretation / tuning by human expert
 - Implicit modeling

Personal Values as Important Attributes for Decision Making

21

Rating Matching Rate (RMR)

Review1

Attribute	Polarity
Total	Positive
Story	Positive
Actor	Positive 🖌
Music	Negative

Review2

Attribute	Polarity
Total	Negative
Story	Negative
Actor	Positive
Music	Positive

✓ Same polarity as total evaluation

RMR			
Attribute	Story	Actor	Music
Match	2	1	0
Unmatch	0	1	2
RMR	1.0	0.5	0.0

User model = n-dimensional vector consisting of each attribute's RMR
High RMR = strong effect on

decision making

22

Advantage of Personal Values-based User Modeling

Model is constructed on attribute space of target item

- Easy to combine with ordinary recommendation methods
- Can be calculated for any attribute IF rating is given
- Stable modeling with small number of reviews (<10)</p>
 - Effective for "lack of information" problem
- Potential for
 - ► Interpretability: suitable for **Explanation** of recommendation
 - Recommending Acceptable items: satisfy important attributes
 - Recommending Long-tail items: shown by experiments

Personal Values-based Collaborative Filtering (Neighborhood-based CF)

- Extend User-based collaborative filtering
- Used for user-user similarity calculation
 - Baseline: correlation of item ratings (i.e. neighborhood-based)
 - Proposed: correlation of RMR

Experimental Result

- Target data: 4Travel
 - ▶ 5,079 users
 - ▶ 7,295 hotels
 - ► 64,137 ratings: sparse dataset
- Comparison of MAE
 - All methods achieved lower MAE for around 4

24

Proposed method: lower MAE for lower ratings

Potential for Long-tail item recommendation

25

► Long Tail selection: select unpopular items with high predicted ratings

- PV can enhance effect of Long Tail selection
- ► PV can improve precision

26

MCFPV (Matrix-based CF employing Personal Values)

Model Relation Matrix

- Manual Setting[Shiraishi17]
 - Diagonal matrix
- Learning from rating matrix
 - Based on prediction error
 - BPR (Bayesian Personalized Ranking) [Rendle09]

$$\begin{pmatrix} 1 & \cdots & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$
$$\begin{pmatrix} 2 & \cdots & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 2 & 0 & \cdots & -1 \end{pmatrix}$$

$$M_{R} = \begin{pmatrix} w_{1,1} & \cdots & w_{1,L} & w_{1,L+1} & \cdots & w_{1,2L} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ w_{L,1} & \cdots & w_{L,L} & w_{L,L+1} & \cdots & w_{L,2L} \end{pmatrix} \mathsf{M}_{\mathsf{U}}$$
(Positive)
$$\mathsf{M}_{\mathsf{V}}$$
(Negative)

Experiments: Dataset

Dataset	# User	# Item	# Rating	Density
Yahoo! Movie	18,507	6,746	523,730	0.00420
Hotpepper Beauty	31,976	8,101	72,386	0.00028

28

> Yahoo! Movie: rating \in {1,2,...,5}

▶ 5 Attributes: Story, Cast, Scenario, Visuals, Music

► Hotpepper Beauty: rating \in {1,2,...,5}

▶ 4 attributes: Atmosphere, Service, Skill, Price

Result: P@3, R@3, Div@3 Yahoo! Movie

Result: (X) Popularity vs. (Y) Diversity

■ MCFPV(PRE) ■ MCFPV(BPR) ■ SVD ■ PMF ■ NMF

Hotpepper Beauty

Good / Bad Points of Personal Values-based User Modeling

▶ [GOOD] Model is constructed on attribute space of target item

- ► Easy to combine with ordinary recommendation methods
- Can be calculated for any attribute IF rating is given
- ▶ [GOOD] Stable modeling with small number of reviews (<10)
 - Effective for cold-start / sparsity problem
- [BAD] Need reviews POSTED by target users
 - ▶ # of reviewers << # of ROMs

User Modeling from Review Browsing Behavior

From user modeling to item modeling

User modeling

Rating records of target item ***** Total Story ***** ★★★☆☆ Total Story ***** Lift value

[Proposed] Item modeling

More review available for item than user

From RMR to Lift value

Personal-values-based user model

Proposed method

34

Attribute evaluation	Total evaluation
Pos	Pos
Pos	Neg
Neg	Pos
Neg	Neg
Lift va	alue

Calculate 4 values for attribute

Calculation of Lift value

POS		POS
Pos		Neg
Neg		Pos
Neg		Neg
4 patte	rs of lif	t value

Example for movie data

The probability of "*The movie is favored*" doubles with the condition of "*Story is* favored"

36

"People who like story tend to be satisfied

"People tend to be satisfied with the movie

with the movie"

Explaining recommendation with lift value

Attribute evaluation	Total evaluation	
Pos	Pos	
Pos	Neg	
Neg	Pos	
Neg	Neg	

Neg	neg

				e	ven though	n they do <mark>not like Visual qua</mark>	ality"
Attribute	P→P	P→N	N→P	N→N			
Story	2.00	0.67	0.00	1.33			
Casts	1.08	0.93	0.87	1.11	-		
Direction	1.22	0.81	0.83	1.14		As I don't care	3
Visual quality	0.00	1.33	0.00	1.33	-	quality, I might	
Music	1.12	0.67	0.97	1.09	-	like it.	

Conclusion

Personal values-based information recommendation

- RMR: Modeling user's personal values
- Introduction to collaborative filtering (neighborhood-based, Matrix-based): effective for long-tail item recommendation

- User modeling from browsing history
- Item modeling with explanation
- Beyond recommending favorite items
 - Paradigm shift to acceptable items
 - Extend applicability of recommender systems: behavior change support, etc.